코안다 효과를 이용한 평판 슬롯의 막냉각 성능 향상

김기문* · 김예지* · 곽재수*†

Improvement of Film Cooling Performance of a Slot on a Flat Plate Using Coanda Effect

Gi Mun Kim^{*}, Ye Jee Kim^{*}, Jae Su Kwak^{*†}

Key Words : Gas Turbine(가스 터빈), Flim Cooling(막냉각), Coanda Effect(코안다 효과), Pressure Sensitive Paint(압력감응폐인트)

ABSTRACT

In this study, the Coanda effect inducing bump was applied to improve the film cooling effectiveness on the flat plate with 30° and 45° angled rectangular slots. The slot length to width ratio was 6. A cylindrical cap shaped structure, called Coanda bump, was installed at the exit of the slot to generate Coanda effect. The width and height of the bump was 10.5 mm and 1 mm, respectively. The film cooling effectiveness was measured at the fixed blowing ratio, M=2.0, using pressure sensitive paint (PSP) technique. The mainstream velocity was 10 m/s and the turbulence intensity was about 0.5%. Results showed that the film cooling effectiveness for case of 30° angled slot was higher than that of 45° angled slot. It was found that there was no positive effect of Coanda effect on the overall averaged film cooling effectiveness for the 30° angled slot. On the other hand, for the 45° angled slot, the film cooling effectiveness was improved with the installation of the Coanda bump.

기호 설명

- 질량 분율(mass fraction) Cair공기 슬롯 단면 폭(Slot diameter) blk암실조건 d_{\cdot} h_{a} 코안다 구조물 높이(Coanda bump height) fgH벽 두께(Height) ref기준상태 코안다 구조물 I 발광강도(Intensity) c슬롯 분사방향 길이(Slot length) 슬롯 L_{s} s분사비(Blowing ratio) M1. 서 론 P정압 [Pa] 코안다 구조물 폭(Coanda bump width) w_{i} 그리스문자
 - 분사 각도 α
 - 막냉각 효율 η
 - 코안다 구조물 곡률반경 ρ_c

하첨자

이종기체(foreign gas)

현대의 가스터빈은 우수한 성능과 높은 효율을 실현하기 위하여 연소기로부터 터빈 입구로 유입되는 온도를 상승시 키는 추세로 발전해왔다. 그러나 이러한 발전 추세는 재료 자체로써 감당할 수 있는 열부하를 이미 초과하였다. 이에 따라 높은 터빈 입구온도를 유지하고, 동시에 높은 열부하로 부터 구성품을 보호하기 위해 다양한 냉각기법들이 연구되

한국항공대학교 항공우주 및 기계공학부(School of Aerospace and Mechanical Engineering, Korea Aerospace University)

교신저자, E-mail : jskwak@kau.ac.kr †

The KSFM Journal of Fluid Machinery: Vol. 20, No. 2, April, 2017, pp.05~10(Received 04 Oct. 2016; revised 09 Nov. 2016; accepted for publication 10 Nov. 2016) 한국유체기계학회 논문집: 제20권, 제2호, pp.05~10, 2017(논문접수일자: 2016.10.04, 논문수정일자: 2016.11.09, 심사완료일자: 2016.11.10) 5

었다. 특히, 이러한 냉각 기법들 중 하나인 막냉각 기법은 터 빈의 고온부품 냉각에 널리 사용되고 있다. 막냉각이란, 터 빈 블레이드 내부 유로로부터 블레이드 표면의 홀 또는 슬롯 을 통해 주유동 온도보다 비교적 낮은 온도의 유체를 분사함 으로써 고온의 연소가스에 노출된 블레이드의 표면에 얇은 막을 형성하여 부품을 보호하는 냉각기법이다.⁽¹⁾ 그러나 과 도한 냉각유체의 분사는 오히려 터빈의 효율을 감소시키기 때문에 적절한 냉각유체 사용과 효과적인 분사에 관한 연구 가 수행되고 있다.

흘 분사에 비해 주유동과의 혼합의 정도가 적은 슬롯분사 는 균일한 유동의 냉각유체를 공급하기 때문에 높은 막냉각 효율을 보인다.⁽²⁾ 슬롯분사를 통한 막냉각은 터빈 끝 벽 (Endwall)의 냉각에도 이용된다. 이는 터빈의 조립과정에서 회전자와 고정자 사이에 불가피하게 생기는 틈새를 통하여 냉각유체를 분사함으로써 연소가스의 역류를 막고 냉각이 어려운 블레이드의 앞전 부근의 냉각을 가능하게 한다. 이러 한 슬롯분사를 이용한 막냉각에 관한 연구로써, 여러 가지 슬롯 형상과 배치에 관한 연구가 수행되었다.⁽¹⁾ Wright 등⁽³⁾ 은 끝 벽에 30° 경사진 슬롯을 설치하고 이 슬롯에 의한 누 설유동과 하류에서의 홀 분사에 의한 냉각이 대해 압력감응 페인트 기법을 이용하여 막냉각 효율을 측정하였다. Papa 등⁽⁴⁾은 나프탈렌 승화법을 통해 45°경사진 슬롯이 설치된 캐스케이드 끝 벽에서 슬롯분사가 유동장을 상당히 변화시 키고 물질 및 열전달에도 큰 영향을 준다고 밝혔다. Mohamed 등⁽⁵⁾은 두 개의 서로 다른 단면형상의 슬롯과 원 통형 막냉각 홀에 대해 해석적 연구를 통해 막냉각 효율을 계산하였다.

코안다 효과는 벽면 주변을 이동하는 유체가 벽면에 부착 되어 그 면을 따라 흐르는 현상이다. 이 효과는 별도의 장치 없이도 유동 패턴에 변화를 줄 수 있다는 장점이 있기 때문 에 양항비, 엔진의 추력편향, 에어포일의 유동제어 등과 같 이 공력특성을 향상시키기 위한 연구에 오랫동안 적용되어 왔다. Sellars 등⁽⁶⁾은 코안다 효과를 이용한 날개의 순환제어 를 통해 양력이 향상됨을 보였고. Freund 등⁽⁷⁾은 코안다 효 과에 의한 재순환 영역의 후류제거와 항력감소를 확인하였 다. 또한 Kim 등⁽⁸⁾은 초음속 코안다 제트의 특성에 영향을 주는 요인들에 대하여 고찰했다. 한편, Transcossi⁽⁹⁾등은 수 학적 모델링을 통해 이중유로의 코안다 노즐에 대한 설계 가 이드를 제시하였고, 이와 같은 이중유로의 코안다 노즐에 대 하여 Dumas 등⁽¹⁰⁾은 노즐의 표면 온도와 코안다 효과의 발 생 정도의 관계에 관한 연구를 하였다. 코안다 효과를 가스 터빈 막냉각에 적용하기 위한 연구로서 Benabed⁽¹¹⁾는 원통 형 막냉각홀에 대하여 코안다 효과를 발생시키는 구조물에 대해 6가지의 형상인자를 선정하고, 전산유체역학에 이용하 여 최적화 연구를 수행하였다.

그러나 코안다 효과를 이용한 가스터빈 막냉각에 관한 선

행연구들의 사례는 많지 않고, 그마저도 해석적 연구가 주를 이룬다. 따라서 본 연구에서는 경사진 슬롯에 코안다 효과를 야기하는 구조물을 적용하여 막냉각 효율을 향상시키려는 연구를 실험적으로 수행하였다. 두 개의 슬롯 각도에 대한 실험을 진행하였고, 막냉각 효율 측정에는 압력감응페인트 기법을 사용하였다. 밀도비 1.0을 구현하기 위하여 주유동과 이종기체는 각각 공기와 질소를 사용하였으며, 분사비는 2.0 으로 고정하였다.

2. 실험 이론 및 장치

2.1 압력감응페인트(Pressure Sensitive Paint) 기법

압력감응페인트는 다공성 폴리머 바인더에 발광분자들이 포함되어 있는 물질이다. 이 발광분자들은 특정 파장대의 자 외선에 노출되면 발광하는 특징을 가지고 있다. 그러나 이 발광분자들이 주변의 산소와 만나게 되면 발광 능력을 상실 하게 되는 산소 퀜칭(oxygen quenching)이 발생한다. 막냉 각 연구에서 막냉각 유체로 질소 등을 분사한 후, 압력감응 압력감응페인트의 발광 강도 비교하면 막냉각 효율을 측정 할 수 있다.⁽¹²⁾

압력감응페인트를 이용한 막냉각 측정에서는 막냉각 유체 로 공기와 이종기체(본 연구에서는 질소)를 각각 분사하고, 각 경우에 대한 산소 분압을 비교하여 Charbonnier 등⁽¹³⁾이 유도한 식 (1)을 이용하여 막냉각 효율을 구한다.

$$g = \frac{C_{O_{2}air} - C_{O_{2}fg}}{C_{O_{2}air}}$$

$$= \frac{(P_{O_{2}})_{air} - (P_{O_{2}})_{fg}}{(P_{O_{2}})_{air}}$$

$$= 1 - \frac{1}{(\frac{(P_{O_{2}})_{air} - (P_{O_{2}})_{fg}}{(P_{O_{2}})_{air}})\frac{w_{fg}}{w_{air}} + 1}$$
(1)

여기서, $(P_{O_2})_{air}$ 는 막냉각 유체로 공기를 분사했을 경우의 산소 분압, $(P_{O_2})_{fg}$ 는 이종기체 (본 연구에서는 질소)를 분사 하였을 경우의 산소분압이며, $\frac{w_{fg}}{w_{air}}$ 는 이종기체와 공기의 분 자량 비를 나타낸다.

압력감응페인트가 도포된 표면의 발광강도와 주변의 산소 분압은 식(2)로 나타낼 수 있다.

$$\frac{I_{ref} - I_{blk}}{I - I_{blk}} = f\left(\frac{\left(P_{O_2}\right)}{\left(P_{O_2}\right)_{ref}}\right) = f\left(P_{ratio}\right)$$
(2)

식 (2)에 의하면 막냉각 효율을 계산하기 위해서는 네 경 우의 빛의 강도 즉, 네 개의 서로 다른 조건에서 촬영된 압력

Table 1 Images of intensity for measurement

Images	Light	Wind tunnel	Coolant ejection
Black image, I_{blk}	OFF	OFF	OFF
Reference image, I_{ref}	ON	OFF	OFF
Air image, I_{air}	ON	ON	Air
Foreign gas image, I_{fg}	ON	ON	Foreign gas

Fig. 2 Schematic of the angled-slot and the Coanda bump

감응페인트의 이미지가 필요하다는 것을 알 수 있다. 1각 이 미지의 구체적인 측정 조건은 Table 1에 나타나 있다.

Fig. 1은 압력과 압력감응페인트의 발광강도의 관계를 보 여주는 보정실험 결과이며, 막냉각 효율 계산과정에 반영되 었다.

2.2 실험장치

Fig. 2는 본 연구에서 막냉각 유체가 분사되는 슬롯과 코 안다 효과를 발생시키기 위한 구조물의 개략적인 형상을 나 타낸 것으로, 각각의 설계인자를 표시하고 있다.

실험에 사용된 슬롯은 주유동 방향에 대하여 각각 30°와 45°의 경사를 가지며, 냉각유체가 분사되는 길이와 슬롯 폭 의 비율은 6으로 동일하다. 코안다 효과를 발생시키기 위한 구조물은 기본적인 원통의 일부를 잘라낸 형상으로 제작되 었다. 슬롯과 구조물의 치수는 Table 2에 제시되어 있으며, 코안다 발생 구조물은 3D 프린팅을 통해 제작하였다.

Table	2	Slot	and	Coanda	bump	geometry
-------	---	------	-----	--------	------	----------

Slot			Bump		
$\alpha(\text{deg})$	30	45	$ ho_c~({ m mm})$	14.5	
$L_{\!s}/d_{\!s}$	(3	$h_c \text{ (mm)}$	1	
H(mm)	12	17	$w_c \pmod{2}$	10.6	

Fig. 3은 본 연구의 실험장치를 나타낸다. 고압탱크로부 터 유입된 냉각유체는 질량유량컨트롤러(TSC-245, MFC Korea)를 거쳐 시험부 하단의 챔버로 공급된다. 주유동 속도 는 10 m/s로 유지하였고, 슬롯 출구로부터 상류방향으로 80 mm인 지점에서 열선유속계로 측정한 난류강도는 약 0.5%이 다. 막냉각 유체로는 공기와 질소가 각각 사용되었고, 이 경 우 주유동에 대한 막냉각 유체의 밀도비는 약 1.0이다. 막냉 각 유체의 분사비는 2.0으로 고정하였다.

압력감응페인트의 발광을 위해 시험부 상부에 400 nm 파 장을 갖는 LED를 설치하였고, 압력감응페인트의 발광 강도 는 냉각 CCD를 갖는 카메라(PCO 1600, PCO)으로 측정되었 다. Table 1의 각 이미지의 압력감응페인트 발광 강도 정보 와 식 (1), (2)를 이용하여 막냉각 효율을 계산하였다.

측정된 막냉각 효율의 불확실성은 비교적 높은 막냉각 효 율 η=0.5에 대해서는 약 ±3.1%, 낮은 막냉각 효율 η=0.1에 대해서는 ±28.15%이다.

3. 실험결과

Fig. 4는 슬롯의 각도와 코안다 발생 구조물 유무에 따른 막냉각 효율의 분포이다. Fig. 4(a)와 (c)는 각각 30°와 45° 슬롯에 대해, 코안다 구조물이 설치되지 않은 경우의 막냉각 효율 분포를 나타낸 것이다. 막냉각 유체가 상대적으로 표면 에 더 평행하게 분사되어 막냉각 유체가 바닥면 부근에 잘 분포되는 30° 슬롯의 막냉각 효율이 45° 슬롯보다 높은 것을 볼 수 있다.

한편, Fig. 4(a)와 (b)는 30° 슬롯에 대해 코안다 구조물

(d) 45° angled-slot and with bump case Fig. 4 Film cooling effectiveness distribution at M=2.0

의 유무에 따른 영향을 나타낸 것으로, 두 경우의 막냉각 효 율 분포와 크기가 유사하게 나타났다. 30° 슬롯의 경우, 막 냉각 유체가 바닥면과 상당히 평행하게 분사되므로, 출구에 설치된 코안다 구조물에 의해 막냉각 유체가 바닥면으로 유 도되는 효과가 미미한 것으로 판단된다. 반면, Fig. 4(c)와 (d)에 나타난 45° 슬롯의 경우, 코안다 슬롯의 유무에 따라 막냉각 효율의 분포와 크기가 다르게 나타났다. 상대적으로 큰 각도를 가지고 분사된 막냉각 유체는 코안다 구조물에 의 해 바닥면으로 유도되고, 이에 의해 막냉각 효율이 증가한 것으로 판단된다.

Fig. 5는 슬롯 출구로부터 하류방향으로 X/d_s=40까지 (Fig. 4의 점선처리 된 직사각형 영역)에 대한 횡방향 평균 막냉각 효율을 나타낸 것이다. 전반적으로 Fig. 5(a)의 30° 슬롯이 Fig. 5(b)의 45° 슬롯보다 높은 막냉각 효율을 보이 고 있는데, 이는 바닥면에 상대적으로 평행하게 분사된 막냉 각 유체가 바닥면 부근에 더 잘 분포되기 때문이다.

30° 슬롯의 경우, 코안다 구조물이 없는 경우가 약간 더

높은 평균 막냉각 효율을 나타내었다. 이는 바닥면과 상대적 으로 더 평행하게 분사된 막냉각 유체가 코안다 구조물에 의 해 부유가 촉진되어 발생한 현상이다. 하류 영역(X/D~40) 에서는 두 경우가 유사한 평균 막냉각 효율을 보인다.

45° 슬롯의 경우, 코안다 구조물이 있는 경우의 평균 막냉 각 효율이 더 높게 나타났다. 앞서 설명한 바와 같이, 상대적 으로 큰 각도를 가지고 분사된 막냉각 유체의 일부가 코안다 구조물에 의해 바닥면으로 유도되어 막냉각 효율의 개선을 가져온 것으로 판단된다.

Fig. 6는 슬롯 출구로부터 유동방향으로 10*d*_s와 30*d*_s 위 치에서의 횡방향 막냉각 효율 분포를 나타낸다. Fig. 6(a)의 30° 슬롯에서는 *X*/*d*_s = 10 지점의 슬롯 중심 부근에서 코안 다 구조물이 없는 경우의 막냉각 효율이 높게 분포한다. 반 면, 45° 슬롯에서는 코안다 구조물이 있는 경우가 없는 경 우보다 더 높은 막냉각 효율을 보였다. 이러한 경향은 비교 적 하류인 *X*/*d*_s = 30(Fig. 6(b))인 지점에서 보다 더 확연하 게 나타난다.

Fig. 7은 슬롯 중심을 따라 유동 방향으로 측정된 막냉각

효율을 나타낸 것이다. 30° 슬롯의 경우는 코안다 구조물이 있는 경우가 더 낮은 막냉각 효율을 보였지만, 그 차이는 크 지 않았다. 반면 45° 슬롯의 경우는 코안다 구조물이 설치된 경우가 전 영역에 거쳐 약 0.1 정도의 막냉각 효율 향상을 나 타내었다.

Fig. 8은 Fig. 5와 동일한 계산 영역에 대하여 전체 면적 평균 막냉각 효율을 나타낸 것이다. 30° 슬롯의 경우에서는 코안다 구조물의 설치가 약 4%의 막냉각 효율 저하를 가져 왔지만 45° 슬롯에서는 코안다 구조물의 설치로 인해 약 3% 의 막냉각 효율 향상을 보였다.

4. 결 론

본 연구에서는 평판에 설치된 두 각도의 슬롯에 대하여 코 안다 효과를 발생시키는 구조물의 설치 유무가 슬롯 막냉각 효율에 미치는 영향을 비교하였다. 막냉각 효율 측정에는 압 력감응페인트 기법이 적용되었고, 아래와 같은 결과를 도출 하였다.

Fig. 8 Overall averaged film cooling effectiveness

- 30° 슬롯의 경우가 전체적으로 45° 슬롯보다 높은 막 냉각 효율을 보였다.
- 2) 30° 슬롯의 경우, 슬롯 출구에 설치된 코안다 구조물
 에 의 주유동의 부유가 촉진되어 막냉각 효율이 감소

하는 결과를 보였다.

- 3) 45° 슬롯의 출구에 설치된 코안다 구조물은 막냉각 유 체를 바닥면 부근으로 유도하여 막냉각 효율의 개선을 보였다.
- 4) 경사 막냉각 슬롯의 출구에 설치된 코안다 구조물은
 막냉각 효율의 증진 효과는 슬롯의 각도, 즉 막냉각 유
 체의 분사각도에 따라 다르게 나타났다.

본 연구에서는 두 종류의 평판 슬롯에 하나의 코안다 구조 물의 설치하여 코안다 효과에 의한 막냉각 증진 여부를 연구 하였다. 슬롯 형상에 따른 코안다 구조물 형상의 최적화 연 구가 수행 중이며, 여러 슬롯 형상에 대한 최적화 결과를 제 시할 예정이다.

후 기

본 연구는 방위사업청, 국방과학연구소의 기초연구 '플라 즈마 작동기와 Coanda 효과를 이용한 막냉각 효율 향상'과 제의 지원에 의해 수행되었으며, 이에 감사드립니다.

References

- Goldstein, R. J., 1971, "Film Cooling," Advances in Heat Transfer, Vol. 7, pp. 321~379.
- (2) Bogard, D. G., 2006, "Gas Turbine Film Cooling," AIAA Journal of Propulsion and Power, Vol. 22. No. 2.
- (3) Wright, L. M., Gao, Z., Yang, H., and Han, J. C., 2006, "Film Cooling Effectiveness Distribution on a Gas Turbine Blade Platform with Inclined Slot Leakage and Discrete Film Hole Flows," ASME Turbo Expo, Barcelona, Spain, GT2006-90375.
- (4) Papa, M., Srinivasan, V., and Goldstein, R. J., 2012, "Film Cooilng Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Trasfer," ASME Journal of Turbomachinery,

Vol. 134.

- (5) Abo El-Azm, M. M., Shalash, K. M., and El-Gabry, L. A., 2014, "INVESTIATION OF A NOVEL DISCRETE SLOT FILM COOLING SCHEME," ASME Turbo Expo, Düsseldorf, Germany, GT2014–26019.
- (6) Sellars, N. D. and Wood, N. J. 2002, "DELTA WING CIRCULATION CONTROL USING THE COANDA EFFECT," AIAA Paper No. AIAA 2002–3269.
- (7) FIŠER, J., JEDELSKÝ, J., VACHFORMAN, T., and JÍCHA, M., 2012, "COMPARISON OF CFD SIMULATIONS AND MEASUREMENTS OF FLOW AFFECTED BY COANDA EFFECT," EPJ Web of Conferences 25, 01015 (2012).
- (8) Kim, H. D., Raghunathan, S., Setoguchi, T., and Matsuo, S., 2000, "EXPERIMENTAL AND NUMERICAL STUDIES OF SUPERSONIC COANDA WALL JETS," AIAA Paer No. AIAA 2000–0814.
- (9) Transcossi, M., Dumas, A., Das, S. S., and Pascoa, J., 2014, "Design methods of Coanda effect nozzle with two streams," INCAS BULLETIN, Vol. 6, Issue 1/2014, pp. 8 3~95.
- (10) Dumas, A., Subhash, M., Transcossi, M., and Marques, J. P., 2013, "The influence of surface temperature on Coanda effect," 68th Conference of the Italian Thermal Machines Engineering Association, AT2013.
- (11) Benabed, M., 2015, "Computational Optimization of Coanda Effect on Film-Cooling Performance," J. Thermophysics and Heat Transfer, Vol. 29, Issue 4.
- (12) Han, J. C. and Rallabandi, A. P., 2010, "Turbine Blade Film Cooling Using PSP Technique," Frontiers in Heat and Mass Transfer(FHMT), 1–013001.
- (13) Charbonnier, D., Ott, P., Jonsson, M., Cottier, F., and Kobke, Th., 2009, "Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform," ASME Paper, GT2009-60306.