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Thermodynamic Characteristics of the Hydraulic and Suction
Performances by the Working Fluid Temperature of
Multistage Centrifugal Pump
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ABSTRACT

High pumping performance is essential for the boiler in industrial processes and thermal power plants. The multistage
centrifugal pump is one of the options for the boiler feed pump because it can deliver a wide range of head and flow rates.
The boiler feed pump operates at a wide range of temperatures, and the working fluid properties are sensitive to the
temperature. The change in the thermodynamic properties of the working fluid (viscosity, density, and thermal conductivity) will
affect the head and efficiency of the multistage centrifugal pump. Besides the hydraulic performance of multistage centrifugal
pumps, the thermodynamic properties of the working fluid will adversely affect the structural stability of the pump. It is
necessary to understand the influence of working fluid thermodynamic properties on the performance of a multistage centrifugal

pump to design and operate the pump appropriately.

maintain a constant flow rate, The multistage

1. Introduction
centrifugal pump consists of two or more centrifugal

The thermal power plant generates electricity by pump impellers in a series of connections, The

converting thermal energy into mechanical and diffusers and the return vanes are connected with the

electrical energy. The process involves the hot water
circulation from the feedwater tank to produce steam,
which drives the gas turbine to generate electricity.
The circulation of the water or other fluids is required
to maintain a consistent temperature and avoid
failure, The multistage centrifugal pump is one of the
options for the circulating pump in the thermal power

plant because it can handle very high pressure and

impellers to direct the flow from one stage to another,
The fluid enters the first impeller under pressure in
the suction line and drains at elevated pressure, After
leaving the first impeller, the fluids enter the second
impeller and increase the pressure, Finally, the
multistage centrifugal pump increases the discharge
pressure enormously, Multistage centrifugal pumps

play a crucial role in the operation of thermal plants
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effectively and cost—effectively generate electricity,

The centrifugal pump operates at a higher

temperature for unique purposes such as boiler feed

cycle(2) When a

pump(l) and organic Rankine

centrifugal pump operates at a higher temperature,
)

necessary precautions should be taken®

in the

Hydraulic

instability exists boiler feed pump, which

decreases its performance of boiler feed pump(4), The
thermodynamic properties of the water are dependent

on water temperature, Saloum and Maksimov

investigated the effect of water temperature on the

performance of a water heat pump(s), The centrifugal

(6)

pump can handle a wide range of viscosities . Ippen

experimented on the centrifugal pump to understand
the effect of viscosity on the pump head and powerm

in the

The temperature rising centrifugal

pump
)

influences the hydraulic loss in the pumping system(8

Li et al. used oil with various kinematic viscosities to

)

evaluate the centrifugal performance

pump
Shojaeefard et al, investigated the role of water and
(10)

oil viscosities in the centrifugal pump performance
In part load conditions, the effect of viscosity on a
single—stage centrifugal pump is smaller than in the
(BEP) and the full load
When the pump operates at a higher

best efficiency point

conditionsm),

water temperature, it induces stress and high vibration
and leads to the failure of the whole system(m),

Furukawa et al, found that the peak pressure

fluctuation occurs at blade

13)

amplitude passing

frequency( . The return vane influenced the internal
flow field of the multistage centrifugal pump, Huang
et al, showed that reverse flows exist at the outlet of
the impeller, which induces asymmetrical and unstable

(14) (15)

flow Experiments by Kawashima et al, showed

that the diffuser vane influenced the performance and
flow field of the impeller, The pump cavitation is
highly dependent on the water temperature, Rundev et
al, established  the

correlation  between the

ratio and water
(16)

vapor—liquid temperature on a

centrifugal pump ., Kim and Song studied the effect

of water on the critical cavitation

(17)

temperature
number Dular and Coutier—Delgosha showed the
temperature variation in the latent heat exchanges
during the vaporization and condensation"?, With the
increase in the water temperature and flow rate, the
cavitation and widens the

process speeds up
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downstream diffusion(lg),

Fig. 1 shows the variation of the centrifugal pump
performance with a change in the fluid viscosity, The
centrifugal pump performance is directly dependent on
the fluid viscosity, However, limited study results are
available for multistage centrifugal pump performance
with high water temperature,

Fig. 2 shows the variation of water viscosity and
density according to the temperature, Fig, 3 shows
that the centrifugal pump efficiency is increased with
the rise in water temperature, Fig, 4 shows that the
centrifugal pump head decreases with the rise in water
temperature, and head drop will decrease the pump
efficiency. There is no proper study about the effect of
water temperature in the multistage centrifugal
centrifugal pump, In this study, numerical analysis
was conducted with a change in water temperature to
understand water temperature’s effect on the hydraulic

and suction performance of the multistage centrifugal

pump,
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Fig. 2 Variation of water density and viscosity according to
the temperature change (21)
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Fig. 3 Performance curves of centrifugal pump with

various water temperatures (22)
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Fig. 4 Variation of pump head with NPSH at various
water temperatures (23)

2. Modeling and Methodology

2.1 Pump modeling

The multistage centrifugal pump comprised a suction
volute, impeller, return vane, diffuser, and discharge
volute, Fig. 5 shows the 3D modeling of the multistage
centrifugal pump, The multistage centrifugal pump
was designed considering the requirement of a specific
speed of the centrifugal pump, The diffuser and return
vanes are designed according to the outlet flow angle

(24)

of the impeller The specific speed N,, which is

defined as shown in Eq. (1), of the single—stage

centrifugal pump is 107 [min!, m’/min. m],

’
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Fig. 5 3D Modeling of the multistage centrifugal pump

N = o

where n is rotational speed (min™), H is effective
head (m), Q is flow rate (m%/s).

2.2 Numerical methodology

The numerical grids for the impeller and return vane
are shown in Fig, 6, ANSYS CFX® and Fluent® were
used for CFD analysis and comparing the CFD analysis
results, ANSYS CFX® is suitable for rotating machinery,
and ANSYS Fluent'® is preferable for thermal analysis,
ANSYS ICEM 19,2(25) was used to generate hexahedral
grids for a multistage centrifugal pump, Fig, 7 shows
the mesh dependency test for the multistage centrifugal
pump CFD analysis, 13.4 million mesh nodes were used
for CFD analysis with a y+ value less than 30 for the
impeller, return vane, and diffuser vane,

The inlet and outlet boundary conditions for the
multistage centrifugal pump were static pressure and
mass flow rate, The frozen rotor interface model was
used, The detailed boundary conditions are shown in
Table 1, The cavitation analysis is conducted using a
mixture of water and water vapor, The Rayleigh—Plesset
equation was used to evaluate the cavitation in the

multistage centrifugal pump,
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Fig. 7 Mesh dependency test for CFD

analysis at Q/Q zrp=1.0

Table 1 Boundary conditions for multistage centrifugal pump

CFD analysis

Parameter/Boundary

Conditions / Value

4245 Y SYMS FopE 54
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< @

where P is input power (W), T is torque input in
impeller (Nm), g is acceleration due to gravity (m/s?),
pin and p,.. are inlet and outlet total pressure,
respectively, p is density of water (kg/m®), o is

rotational speed (rad/s), 5 is pump efficiency,

3. Results and Discussion

3.1 Performance curves of multistage centrifugal
pump at the working fluid temperature of 25
°C

The performance curves of a multistage centrifugal
pump are prepared by changing the flow rate at the
working fluid temperature of 25°C, Fig, 8 shows the
performance curves of the multistage centrifugal
pump, Fig. 8 shows the comparison between CFX and
Fluent CFD analysis results, CFD analysis showed a
good correlation between CFX and Fluent, The design
point and the best efficiency point (BEP) match well
with both CFX and Fluent, It implies that CFD analysis
is acceptable, The design and best efficiency points of

the multistage centrifugal pump match well with each

Analysis type

Steady

Unsteady

Inlet Static pressure Static pressure

Outlet Mass flow rate Mass flow rate
Rotational speed 1750 min’' 1750 min
Turbulence model SST SAS-SST
Time step 0.00038 sec

Interface model

Frozen rotor

Transient rotor stator

Working fluid

Fresh water

The following performance measures are used to

evaluate the performance of the multistage centrifugal

pump.
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Fig. 8 Performance curves of multistage centrifugal pump at

water temperature 25°C
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other, It infers that the design of the multistage
centrifugal pump is satisfactory, The pump achieved

70% efficiency with a net head of 210 m,

3.2 Internal flow in multistage centrifugal pump
at the working fluid temperature of 25°C

The multistage centrifugal pumps are used to
increase the discharge pressure significantly, Fig, 9
shows the velocity streamlines at the 4™ stage of the
multistage centrifugal pump with various flow
conditions,
visible at Q/Qsrp=0.65. The circulation flow is

predominantly at the impeller outlet, At Q/Q prp=1.00,

The circulation flow in the impeller is

the velocity streamlines are smooth without

recirculation flow, At Q/Qprp=1.35, the velocity
magnitude is above 25 m/s at the impeller passage.
The velocity streamlines suggested that Q/Q zgp=1,00

has a low recirculation flow and pressure loss,

3.3 Performance curves of multistage centrifugal
pump at various water temperatures

From Eq. (4), it can be seen that efficiency is closely
related to the density of the working fluid, and the
pump efficiency changes proportionally as the density
changes, The density of the working fluid water of the
pump changes according to temperature, and as shown
in Fig 7, the viscosity and the density of the water
change according to the temperature change,

Fig. 10

multistage centrifugal pump at various temperatures,

shows the performance curves of a
The maximum efficiency of the multistage centrifugal
pump is observed at 25°C. The pump efficiency is
decreased from 70% to 55%
temperature rises from 25°C to 250°C at the BE P, At

Q/0Qprp=0.65, the efficiency drops from 60% to 53%

when the water

when the water temperature increases from 25°C to
250°C., When the temperature increases from 25°C to
250°C, the pump efficiency drops from 61% to 31% at
0/0sep=1.35. It implies that temperature rise has a
significant impact on the pump performance,

Fig. 11 indicates the effect of water temperature on
the pump performance, When temperature increases
from 25°C to 100°C, the efficiency and head drops are
3.9% and 5.7%, respectively, at Q/Q zrp=1.00. The pump
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performance is stable from 25°C to 100°C water
temperature, When the temperature is more than

150°C, the pump performance decreases drastically,
When the temperature rises from 25°C to 250°C,
efficiency and head decreased by 20,5% and 28,6%,
respectively, at Q/Q prp=1.00,

Velocity ms*1]

Fig. 9 Velocity streamlines in the multistage centrifugal
impeller at 4™ stage (25°C) : a) Q/Q 5£»=0.65
b) 0/Qsrp=1.00 and c) Q/Qprpr=1.35
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Fig. 10 Performance curves of multistage centrifugal pump
according to various water temperatures by ANSYS CFX
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Fig. 11 Variation of multistage centrifugal pump efficiency
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3.4 Pressure distribution in multistage centrifugal
pump at various water temperatures

Fig. 12 shows the pressure distribution in the
multistage centrifugal pump at various flow rates and
water temperatures, The increase in static pressure is
dependent on the flow rate, At Q/Q g p=0.65 and 25°C,
the discharge pressure reaches 2500 kPa, but at Q/Qggep
and 25°C=1,35, the discharge pressure drop to 1500
kPa, At Q/Q e p=1.00, the pressure increases gradually
at the interface between stages, At Q/Q prp=0.65, the
discharge pressure is decreased by 22% when the water
temperature rises from 25°C to 250°C, The linear
pressure distribution pattern is similar from the 1% to
5% stages of the multistage centrifugal pump except
for the return
0/0QpEp=0.65. At Q/Q prp=1.00 and when the temperature

rises from 25°C to 250°C, the discharge pressure is

diffuser and vane regions at

reduced by 82.5%. The pressure distribution in the
multistage centrifugal pump changes drastically, and
the discharge pressure drops by 65% when the
temperature rises from 25°C to 250°C at the high flow
rate of Q/Q zgp=1.35. The pressure drop at the impeller
inlet and outlet causes a significant efficiency drop in
the multistage centrifugal pump at Q/Q s p=1.35. Fig,
13 shows pressure contours at Q/Q prp= 1.35 and 250°C,
The sudden drop of pressure is observed at the outlet
of the return vane in Fig, 13, It implies that
recirculation flow and vortex formation at the impeller
inlet causes a pressure drop,

Fig. 14 shows the blade loading in the 5t stage
impeller at Q/Q prp=1.00 with various water temperatures,
The blade loading showed that the pressure decreases
impeller with

At the leading edge (LE), the

drastically in the flow passage
temperature rise,
crossover between the blade pressure and suction sides
is visible when the pump operates at a high
temperature, The crossover between the blade pressure
and suction sides indicates the negative work done in
the centrifugal pump and increases the input power,
The rise in water temperature decreases water density
and viscosity, which shows a drastic pressure drop. At
25°C and Q/Q prp=1.35, the outlet pressure at the 5
stage impeller is 1500 kPa 3 times higher than the

outlet pressure at 250°C and Q/Q ppp=1.35,

S=RMPIHSE =28 267, Me=, 2023
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3.5 Volumetric efficiency in multistage centrifugal
pump at various water temperatures

The leakage flow and volumetric efficiency are
15 and Fig. 16,

volumetric efficiency is calculated using Eq. (5)

respectively, The
(26)

shown in Fig,

_ @
nﬂiQ‘i’Al] (5)

where 77, is volumetric efficiency, @ is design flow
rate (m®/s) and Agq is leakage flow from the clearance
gap.

Fig. 15

between without and with leakage gap in a multistage

shows performance curves comparison
centrifugal pump, The leakage flow rate increases with

an increase in flow rate, Fig, 16 shows that the
leakage flow rate increases with an increase in the
water temperature and a decrease in flow rate, Fig, 17
shows a drop in volumetric efficiency with a rise in
water temperature, The volumetric efficiency decreases
with an increase in water temperature, It implies that
the performance of a multistage centrifugal pump

decreases with an increase in water temperature,

3.6 Suction performance of multistage centrifugal
pump at various water temperature
The cavitation number is used to calculate the

suction performance, The cavitation number is

calculated by using Eq. (6).

pi T gt _p'uap
o=—— 6
Tl (6)

where p.

LT gt

and p,., are inlet static and saturated

vapor pressures, respectively,

Fig. 18 shows the suction performance of the
multistage centrifugal pump at the working fluid
temperature of 25°C. The critical cavitation number (o)
is the point in the suction performance when efficiency
is dropped by 3%, At Q/Q 3£ p,=0.65 and 1,35, the critical
cavitation numbers are 0,04 and 1,32, respectively.
The critical cavitation number increased drastically

with the increase in flow rate, which implies that the

multistage centrifugal pump is highly susceptible to
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various water temperatures
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Fig. 16 Leakage flow rate in the multistage centrifugal pump
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Fig. 17 Volumetric efficiency in the multistage centrifugal

pump at various water temperatures

cavitation at a higher flow rate,
Fig. 19

variation in water temperature at Q/Q prpr=0.65, When

indicates the suction performance with

the water temperature rises from 25°C to 250°C, the

critical cavitation number increases from 0,04 to 0,08,
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Fig. 19 Suction performance of multistage pump at

0/0 5rp=0.65 with various water temperatures

It implies that the possibility of cavitation is increased
drastically with rises in water temperature, Besides an
increase in cavitation possibility, the performance of
the multistage centrifugal pump is dropped by reducing
the head with an increase in water temperature, The
head decreased from 240m to 180m with an increase in
water temperature from 25°C to 250°C in a multistage
centrifugal pump,

Fig. 20 shows the vapor volume fraction distribution
in the 1% stage impeller of a multistage centrifugal
pump. At Q/Qprp=1.00 and =022, the vapor volume
fraction distribution is compared in 1st stage of a
multistage centrifugal pump with various water
temperatures, The vapor volume fraction is visible in
the impeller flow passage at 250°C water rather than
25°C water, It clarifies that the cavitation possibility
increases with the rise in water temperature,

Fig. 21 shows the correlation between the critical

cavitation number and the head of the multistage

S=RMPIHSE =28 267, Me=, 2023
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Fig. 21 Critical cavitation number and head of multistage
centrifugal pump at various water viscosities by

temperature change

centrifugal pump, The critical cavitation value

increases and the head decreases gradually with a
decrease in water viscosity, The high critical
cavitation number means the possibility of cavitation
increases in a multistage centrifugal pump, At full
load

increases, and the head reduces rapidly with decreases

conditions, the critical cavitation number

in water viscosity, Hence, the drop in water viscosity

reduces the head and increases the -cavitation

possibility in a multistage centrifugal pump,

4. Conclusion

The numerical analysis was conducted for the

multistage centrifugal pump with various water
temperatures, The hydraulic and suction performance

of the multistage centrifugal pump is highly dependent
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on the water temperature, When the water temperature
increases, the thermodynamic properties of water,
such as water viscosity and density, change and
directly influence the performance of the multistage
centrifugal pump., The hydraulic performance of a
multistage centrifugal pump decreases gradually with
an increase in water temperature, The discharge
pressure in the multistage centrifugal pump decreases
gradually with a drop in water viscosity, The discharge
pressure decreases when the water viscosity decreases,

The suction performance decreases with a drop in
water increase,

viscosity by the temperature

Therefore, the rise in water temperature affects a
multistage centrifugal pump’s hydraulic and suction

performance,
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